First talk : Stable points of the scheme of arcs : Curve Selection Lemma. The space of arcs X_{∞} of a singular variety X over a perfect field k has finiteness properties when we localize at its stable points. In the talk we will introduce the stable points P of X_{∞} and discuss these finiteness properties of the local rings $\mathcal{O}_{X_{\infty},P}$. In particular, we will present our Curve Selection Lemma and show, as consequence, a characterization of the image of the Nash map in terms of a property of wedges.

Second talk : Mather discrepancy as an embedded dimension in the space of arcs.

We will point out our interest in computing the dimension of the complete local ring $\mathcal{O}_{X_{\infty},P_E}$ when P_E is the stable point defined by a divisorial valuation ν_E on X. We will also present our last result, together with H. Mourtada : "Assuming char k = 0, we prove that embdim $\mathcal{O}_{X_{\infty},P_E} = \hat{k}_E + 1$ where \hat{k}_E is the Mather discrepancy of X with respect to ν_E . We also obtain that dim $\mathcal{O}_{X_{\infty},P_E}$ has as lower bound the Mather-Jacobian log-discrepancy of X with respect to ν_E . For X normal and complete intersection, we prove as a consequence that points P_E of codimension one in X_{∞} have discrepancy $k_E \leq 0$ ".